| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | fallfacval | ⊢ ( ( 0  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  FallFac  𝑁 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 0  −  𝑘 ) ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  FallFac  𝑁 )  =  ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 0  −  𝑘 ) ) | 
						
							| 5 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 6 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 7 | 5 6 | eleqtrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 8 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 9 | 8 | zcnd | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 10 |  | subcl | ⊢ ( ( 0  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 0  −  𝑘 )  ∈  ℂ ) | 
						
							| 11 | 1 9 10 | sylancr | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) )  →  ( 0  −  𝑘 )  ∈  ℂ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) )  →  ( 0  −  𝑘 )  ∈  ℂ ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 0  −  𝑘 )  =  ( 0  −  0 ) ) | 
						
							| 14 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( 0  −  𝑘 )  =  0 ) | 
						
							| 16 | 7 12 15 | fprod1p | ⊢ ( 𝑁  ∈  ℕ  →  ∏ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 0  −  𝑘 )  =  ( 0  ·  ∏ 𝑘  ∈  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) ) ( 0  −  𝑘 ) ) ) | 
						
							| 17 |  | fzfid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) )  ∈  Fin ) | 
						
							| 18 |  | elfzelz | ⊢ ( 𝑘  ∈  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 19 | 18 | zcnd | ⊢ ( 𝑘  ∈  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 20 | 1 19 10 | sylancr | ⊢ ( 𝑘  ∈  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) )  →  ( 0  −  𝑘 )  ∈  ℂ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) ) )  →  ( 0  −  𝑘 )  ∈  ℂ ) | 
						
							| 22 | 17 21 | fprodcl | ⊢ ( 𝑁  ∈  ℕ  →  ∏ 𝑘  ∈  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) ) ( 0  −  𝑘 )  ∈  ℂ ) | 
						
							| 23 | 22 | mul02d | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  ·  ∏ 𝑘  ∈  ( ( 0  +  1 ) ... ( 𝑁  −  1 ) ) ( 0  −  𝑘 ) )  =  0 ) | 
						
							| 24 | 4 16 23 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  FallFac  𝑁 )  =  0 ) |