Metamath Proof Explorer


Theorem 0fallfac

Description: The value of the zero falling factorial at natural N . (Contributed by Scott Fenton, 17-Feb-2018)

Ref Expression
Assertion 0fallfac N0N_=0

Proof

Step Hyp Ref Expression
1 0cn 0
2 nnnn0 NN0
3 fallfacval 0N00N_=k=0N10k
4 1 2 3 sylancr N0N_=k=0N10k
5 nnm1nn0 NN10
6 nn0uz 0=0
7 5 6 eleqtrdi NN10
8 elfzelz k0N1k
9 8 zcnd k0N1k
10 subcl 0k0k
11 1 9 10 sylancr k0N10k
12 11 adantl Nk0N10k
13 oveq2 k=00k=00
14 0m0e0 00=0
15 13 14 eqtrdi k=00k=0
16 7 12 15 fprod1p Nk=0N10k=0k=0+1N10k
17 fzfid N0+1N1Fin
18 elfzelz k0+1N1k
19 18 zcnd k0+1N1k
20 1 19 10 sylancr k0+1N10k
21 20 adantl Nk0+1N10k
22 17 21 fprodcl Nk=0+1N10k
23 22 mul02d N0k=0+1N10k=0
24 4 16 23 3eqtrd N0N_=0