Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimabs.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| rlimabs.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| Assertion | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimabs.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | rlimabs.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 3 | rlimf | ⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) |
| 5 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 6 | 5 1 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 7 | 6 | feq2d | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ↔ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 9 | 8 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |