Metamath Proof Explorer


Theorem rlimmptrcl

Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimabs.1 φkABV
rlimabs.2 φkABC
Assertion rlimmptrcl φkAB

Proof

Step Hyp Ref Expression
1 rlimabs.1 φkABV
2 rlimabs.2 φkABC
3 rlimf kABCkAB:domkAB
4 2 3 syl φkAB:domkAB
5 eqid kAB=kAB
6 5 1 dmmptd φdomkAB=A
7 6 feq2d φkAB:domkABkAB:A
8 4 7 mpbid φkAB:A
9 8 fvmptelcdm φkAB