Description: The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmassa | ⊢ ( 𝑅 ∈ CRing → ( ringLMod ‘ 𝑅 ) ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 2 | subrgid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 5 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
| 6 | 5 | sraassa | ⊢ ( ( 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) → ( ringLMod ‘ 𝑅 ) ∈ AssAlg ) |
| 7 | 4 6 | mpdan | ⊢ ( 𝑅 ∈ CRing → ( ringLMod ‘ 𝑅 ) ∈ AssAlg ) |