Metamath Proof Explorer


Theorem rmo2

Description: Alternate definition of restricted "at most one." Note that E* x e. A ph is not equivalent to E. y e. A A. x e. A ( ph -> x = y ) (in analogy to reu6 ); to see this, let A be the empty set. However, one direction of this pattern holds; see rmo2i . (Contributed by NM, 17-Jun-2017)

Ref Expression
Hypothesis rmo2.1 𝑦 𝜑
Assertion rmo2 ( ∃* 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 rmo2.1 𝑦 𝜑
2 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
3 nfv 𝑦 𝑥𝐴
4 3 1 nfan 𝑦 ( 𝑥𝐴𝜑 )
5 4 mof ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑦𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥 = 𝑦 ) )
6 impexp ( ( ( 𝑥𝐴𝜑 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥𝐴 → ( 𝜑𝑥 = 𝑦 ) ) )
7 6 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝑥 = 𝑦 ) ) )
8 df-ral ( ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝑥 = 𝑦 ) ) )
9 7 8 bitr4i ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )
10 9 exbii ( ∃ 𝑦𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )
11 2 5 10 3bitri ( ∃* 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )