Metamath Proof Explorer


Theorem rngoiso1o

Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1 𝐺 = ( 1st𝑅 )
rngisoval.2 𝑋 = ran 𝐺
rngisoval.3 𝐽 = ( 1st𝑆 )
rngisoval.4 𝑌 = ran 𝐽
Assertion rngoiso1o ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : 𝑋1-1-onto𝑌 )

Proof

Step Hyp Ref Expression
1 rngisoval.1 𝐺 = ( 1st𝑅 )
2 rngisoval.2 𝑋 = ran 𝐺
3 rngisoval.3 𝐽 = ( 1st𝑆 )
4 rngisoval.4 𝑌 = ran 𝐽
5 1 2 3 4 isrngoiso ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝑋1-1-onto𝑌 ) ) )
6 5 simplbda ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : 𝑋1-1-onto𝑌 )
7 6 3impa ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : 𝑋1-1-onto𝑌 )