Metamath Proof Explorer


Theorem rp-abid

Description: Two ways to express a class. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion rp-abid 𝐴 = { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 }

Proof

Step Hyp Ref Expression
1 clel5 ( 𝑥𝐴 ↔ ∃ 𝑎𝐴 𝑥 = 𝑎 )
2 1 eqabi 𝐴 = { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 }