Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Natural addition of Cantor normal forms
rp-abid
Next ⟩
oadif1lem
Metamath Proof Explorer
Ascii
Structured
Theorem
rp-abid
Description:
Two ways to express a class.
(Contributed by
RP
, 13-Feb-2025)
Ref
Expression
Assertion
rp-abid
⊢
𝐴
= {
𝑥
∣ ∃
𝑎
∈
𝐴
𝑥
=
𝑎
}
Proof
Step
Hyp
Ref
Expression
1
clel5
⊢
(
𝑥
∈
𝐴
↔ ∃
𝑎
∈
𝐴
𝑥
=
𝑎
)
2
1
eqabi
⊢
𝐴
= {
𝑥
∣ ∃
𝑎
∈
𝐴
𝑥
=
𝑎
}