Metamath Proof Explorer


Theorem rp-abid

Description: Two ways to express a class. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion rp-abid
|- A = { x | E. a e. A x = a }

Proof

Step Hyp Ref Expression
1 clel5
 |-  ( x e. A <-> E. a e. A x = a )
2 1 eqabi
 |-  A = { x | E. a e. A x = a }