Description: The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrrvv.1 | ⊢ ( 𝜑 → 𝑃 ∈ Prob ) | |
rrvvf.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) | ||
Assertion | rrvdmss | ⊢ ( 𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | ⊢ ( 𝜑 → 𝑃 ∈ Prob ) | |
2 | rrvvf.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) | |
3 | 1 2 | rrvdm | ⊢ ( 𝜑 → dom 𝑋 = ∪ dom 𝑃 ) |
4 | eqimss2 | ⊢ ( dom 𝑋 = ∪ dom 𝑃 → ∪ dom 𝑃 ⊆ dom 𝑋 ) | |
5 | 3 4 | syl | ⊢ ( 𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋 ) |