Description: The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrrvv.1 | ⊢ ( 𝜑 → 𝑃 ∈ Prob ) | |
| rrvvf.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) | ||
| Assertion | rrvdmss | ⊢ ( 𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrrvv.1 | ⊢ ( 𝜑 → 𝑃 ∈ Prob ) | |
| 2 | rrvvf.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) | |
| 3 | 1 2 | rrvdm | ⊢ ( 𝜑 → dom 𝑋 = ∪ dom 𝑃 ) |
| 4 | eqimss2 | ⊢ ( dom 𝑋 = ∪ dom 𝑃 → ∪ dom 𝑃 ⊆ dom 𝑋 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋 ) |