Description: The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
| rrvvf.1 | |- ( ph -> X e. ( rRndVar ` P ) ) |
||
| Assertion | rrvdmss | |- ( ph -> U. dom P C_ dom X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
| 2 | rrvvf.1 | |- ( ph -> X e. ( rRndVar ` P ) ) |
|
| 3 | 1 2 | rrvdm | |- ( ph -> dom X = U. dom P ) |
| 4 | eqimss2 | |- ( dom X = U. dom P -> U. dom P C_ dom X ) |
|
| 5 | 3 4 | syl | |- ( ph -> U. dom P C_ dom X ) |