Description: The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
rrvvf.1 | |- ( ph -> X e. ( rRndVar ` P ) ) |
||
Assertion | rrvdmss | |- ( ph -> U. dom P C_ dom X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
2 | rrvvf.1 | |- ( ph -> X e. ( rRndVar ` P ) ) |
|
3 | 1 2 | rrvdm | |- ( ph -> dom X = U. dom P ) |
4 | eqimss2 | |- ( dom X = U. dom P -> U. dom P C_ dom X ) |
|
5 | 3 4 | syl | |- ( ph -> U. dom P C_ dom X ) |