Metamath Proof Explorer


Theorem rrvdmss

Description: The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1
|- ( ph -> P e. Prob )
rrvvf.1
|- ( ph -> X e. ( rRndVar ` P ) )
Assertion rrvdmss
|- ( ph -> U. dom P C_ dom X )

Proof

Step Hyp Ref Expression
1 isrrvv.1
 |-  ( ph -> P e. Prob )
2 rrvvf.1
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 1 2 rrvdm
 |-  ( ph -> dom X = U. dom P )
4 eqimss2
 |-  ( dom X = U. dom P -> U. dom P C_ dom X )
5 3 4 syl
 |-  ( ph -> U. dom P C_ dom X )