| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rspct.1 | 
							⊢ Ⅎ 𝑥 𝜓  | 
						
						
							| 2 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑥  ∈  𝐵 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  𝜑 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝐵  ↔  𝐴  ∈  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝑥  =  𝐴  ∧  ( 𝜑  ↔  𝜓 ) )  →  ( 𝑥  ∈  𝐵  ↔  𝐴  ∈  𝐵 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  =  𝐴  ∧  ( 𝜑  ↔  𝜓 ) )  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							imbi12d | 
							⊢ ( ( 𝑥  =  𝐴  ∧  ( 𝜑  ↔  𝜓 ) )  →  ( ( 𝑥  ∈  𝐵  →  𝜑 )  ↔  ( 𝐴  ∈  𝐵  →  𝜓 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ex | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  ↔  𝜓 )  →  ( ( 𝑥  ∈  𝐵  →  𝜑 )  ↔  ( 𝐴  ∈  𝐵  →  𝜓 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							a2i | 
							⊢ ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  →  𝜑 )  ↔  ( 𝐴  ∈  𝐵  →  𝜓 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							alimi | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  →  𝜑 )  ↔  ( 𝐴  ∈  𝐵  →  𝜓 ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝐴  ∈  𝐵  | 
						
						
							| 11 | 
							
								10 1
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( 𝐴  ∈  𝐵  →  𝜓 )  | 
						
						
							| 12 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 13 | 
							
								11 12
							 | 
							spcgft | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐵  →  𝜑 )  ↔  ( 𝐴  ∈  𝐵  →  𝜓 ) ) )  →  ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐵  →  𝜑 )  →  ( 𝐴  ∈  𝐵  →  𝜓 ) ) ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							syl | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐵  →  𝜑 )  →  ( 𝐴  ∈  𝐵  →  𝜓 ) ) ) )  | 
						
						
							| 15 | 
							
								2 14
							 | 
							syl7bi | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 𝜑  →  ( 𝐴  ∈  𝐵  →  𝜓 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							com34 | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 𝜑  →  𝜓 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							pm2.43d | 
							⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 𝜑  →  𝜓 ) ) )  |