| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equsb1 |
⊢ [ 𝑦 / 𝑥 ] 𝑥 = 𝑦 |
| 2 |
|
sban |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑦 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 3 |
2
|
simplbi2com |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
| 4 |
1 3
|
mpi |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
| 5 |
|
spsbe |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 = 𝑦 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
| 6 |
4 5
|
syl |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
| 7 |
|
hbs1 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 8 |
|
simpr |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) |
| 9 |
8
|
a1i |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝑥 = 𝑦 ) |
| 11 |
10
|
a1i |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 12 |
|
sbequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 13 |
12
|
com12 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 14 |
9 11 13
|
syl6c |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 15 |
7 14
|
exlimexi |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
| 16 |
6 15
|
impbii |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |