Metamath Proof Explorer


Theorem sbalexi

Description: Inference form of sbalex , avoiding ax-10 by using ax-gen . (Contributed by SN, 12-Aug-2025)

Ref Expression
Hypothesis sbalexi.1 𝑥 ( 𝑥 = 𝑦𝜑 )
Assertion sbalexi 𝑥 ( 𝑥 = 𝑦𝜑 )

Proof

Step Hyp Ref Expression
1 sbalexi.1 𝑥 ( 𝑥 = 𝑦𝜑 )
2 ax12ev2 ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ( 𝑥 = 𝑦𝜑 ) )
3 1 2 ax-mp ( 𝑥 = 𝑦𝜑 )
4 3 ax-gen 𝑥 ( 𝑥 = 𝑦𝜑 )