Metamath Proof Explorer


Theorem sbalexi

Description: Inference form of sbalex , avoiding ax-10 by using ax-gen . (Contributed by SN, 12-Aug-2025)

Ref Expression
Hypothesis sbalexi.1
|- E. x ( x = y /\ ph )
Assertion sbalexi
|- A. x ( x = y -> ph )

Proof

Step Hyp Ref Expression
1 sbalexi.1
 |-  E. x ( x = y /\ ph )
2 ax12ev2
 |-  ( E. x ( x = y /\ ph ) -> ( x = y -> ph ) )
3 1 2 ax-mp
 |-  ( x = y -> ph )
4 3 ax-gen
 |-  A. x ( x = y -> ph )