Description: Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbctt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 2 | 1 | bibi1d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) ↔ ( Ⅎ 𝑥 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) ) ) |
| 4 | sbft | ⊢ ( Ⅎ 𝑥 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) | |
| 5 | 3 4 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( Ⅎ 𝑥 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |