Description: An identity theorem for substitution. See sbid . See Remark 9.1 in Megill p. 447 (p. 15 of the preprint). (Contributed by DAW, 18-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbidd.1 | ⊢ ( 𝜑 → [ 𝑥 / 𝑥 ] 𝜓 ) | |
Assertion | sbidd | ⊢ ( 𝜑 → 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbidd.1 | ⊢ ( 𝜑 → [ 𝑥 / 𝑥 ] 𝜓 ) | |
2 | sbid | ⊢ ( [ 𝑥 / 𝑥 ] 𝜓 ↔ 𝜓 ) | |
3 | 1 2 | sylib | ⊢ ( 𝜑 → 𝜓 ) |