Metamath Proof Explorer
		
		
		
		Description:  Introduce right biconditional inside of a substitution.  (Contributed by NM, 18-Aug-1993)  (Revised by Mario Carneiro, 4-Oct-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sbrbif.1 | ⊢ Ⅎ 𝑥 𝜒 | 
					
						|  |  | sbrbif.2 | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
				
					|  | Assertion | sbrbif | ⊢  ( [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝜒 )  ↔  ( 𝜓  ↔  𝜒 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbrbif.1 | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 2 |  | sbrbif.2 | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 3 | 2 | sbrbis | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝜒 )  ↔  ( 𝜓  ↔  [ 𝑦  /  𝑥 ] 𝜒 ) ) | 
						
							| 4 | 1 | sbf | ⊢ ( [ 𝑦  /  𝑥 ] 𝜒  ↔  𝜒 ) | 
						
							| 5 | 4 | bibi2i | ⊢ ( ( 𝜓  ↔  [ 𝑦  /  𝑥 ] 𝜒 )  ↔  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 6 | 3 5 | bitri | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  ↔  𝜒 )  ↔  ( 𝜓  ↔  𝜒 ) ) |