| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nf |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 2 |
1
|
sbbii |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 3 |
|
sbim |
⊢ ( [ 𝑧 / 𝑦 ] ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) |
| 4 |
|
sbex |
⊢ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 5 |
|
sbal |
⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 6 |
4 5
|
imbi12i |
⊢ ( ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 7 |
|
df-nf |
⊢ ( Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ( ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 8 |
6 7
|
bitr4i |
⊢ ( ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 9 |
2 3 8
|
3bitri |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |