| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbim | ⊢ ( [ 𝑧  /  𝑦 ] ( 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ( [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑 ) ) | 
						
							| 2 |  | sbal | ⊢ ( [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 3 | 2 | imbi2i | ⊢ ( ( [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑧  /  𝑦 ] ∀ 𝑥 𝜑 )  ↔  ( [ 𝑧  /  𝑦 ] 𝜑  →  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 4 | 1 3 | bitri | ⊢ ( [ 𝑧  /  𝑦 ] ( 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ( [ 𝑧  /  𝑦 ] 𝜑  →  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 5 | 4 | albii | ⊢ ( ∀ 𝑥 [ 𝑧  /  𝑦 ] ( 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ∀ 𝑥 ( [ 𝑧  /  𝑦 ] 𝜑  →  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 6 |  | nf5 | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 7 | 6 | sbbii | ⊢ ( [ 𝑧  /  𝑦 ] Ⅎ 𝑥 𝜑  ↔  [ 𝑧  /  𝑦 ] ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 8 |  | sbal | ⊢ ( [ 𝑧  /  𝑦 ] ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( [ 𝑧  /  𝑦 ] Ⅎ 𝑥 𝜑  ↔  ∀ 𝑥 [ 𝑧  /  𝑦 ] ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 10 |  | nf5 | ⊢ ( Ⅎ 𝑥 [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ( [ 𝑧  /  𝑦 ] 𝜑  →  ∀ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 11 | 5 9 10 | 3bitr4i | ⊢ ( [ 𝑧  /  𝑦 ] Ⅎ 𝑥 𝜑  ↔  Ⅎ 𝑥 [ 𝑧  /  𝑦 ] 𝜑 ) |