| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbim |
⊢ ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) |
| 2 |
|
sbal |
⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 3 |
2
|
imbi2i |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 4 |
1 3
|
bitri |
⊢ ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 6 |
|
nf5 |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 7 |
6
|
sbbii |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 8 |
|
sbal |
⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 9 |
7 8
|
bitri |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 10 |
|
nf5 |
⊢ ( Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 11 |
5 9 10
|
3bitr4i |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |