| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brinxp | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦 𝑅 𝑥  ↔  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦 𝑅 𝑥  ↔  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) ) | 
						
							| 3 | 2 | rabbidva | ⊢ ( 𝑥  ∈  𝐴  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  =  { 𝑦  ∈  𝐴  ∣  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) | 
						
							| 4 | 3 | eleq1d | ⊢ ( 𝑥  ∈  𝐴  →  ( { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V  ↔  { 𝑦  ∈  𝐴  ∣  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  ∈  V ) ) | 
						
							| 5 | 4 | ralbiia | ⊢ ( ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V  ↔  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  ∈  V ) | 
						
							| 6 |  | df-se | ⊢ ( 𝑅  Se  𝐴  ↔  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) | 
						
							| 7 |  | df-se | ⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  Se  𝐴  ↔  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  ∈  V ) | 
						
							| 8 | 5 6 7 | 3bitr4i | ⊢ ( 𝑅  Se  𝐴  ↔  ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  Se  𝐴 ) |