Metamath Proof Explorer


Theorem setc2obas

Description: (/) and 1o are distinct objects in ( SetCat2o ) . This combined with setc2ohom demonstrates that the category does not have pairwise disjoint hom-sets. See also df-cat and cat1 . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses setc2ohom.c 𝐶 = ( SetCat ‘ 2o )
setc2obas.b 𝐵 = ( Base ‘ 𝐶 )
Assertion setc2obas ( ∅ ∈ 𝐵 ∧ 1o𝐵 ∧ 1o ≠ ∅ )

Proof

Step Hyp Ref Expression
1 setc2ohom.c 𝐶 = ( SetCat ‘ 2o )
2 setc2obas.b 𝐵 = ( Base ‘ 𝐶 )
3 0ex ∅ ∈ V
4 3 prid1 ∅ ∈ { ∅ , 1o }
5 2oex 2o ∈ V
6 5 a1i ( ⊤ → 2o ∈ V )
7 1 6 setcbas ( ⊤ → 2o = ( Base ‘ 𝐶 ) )
8 7 mptru 2o = ( Base ‘ 𝐶 )
9 df2o3 2o = { ∅ , 1o }
10 2 8 9 3eqtr2i 𝐵 = { ∅ , 1o }
11 4 10 eleqtrri ∅ ∈ 𝐵
12 1oex 1o ∈ V
13 12 prid2 1o ∈ { ∅ , 1o }
14 13 10 eleqtrri 1o𝐵
15 1n0 1o ≠ ∅
16 11 14 15 3pm3.2i ( ∅ ∈ 𝐵 ∧ 1o𝐵 ∧ 1o ≠ ∅ )