| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres | ⊢ Rel  ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) | 
						
							| 2 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 3 |  | eqeq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑦  =  𝑧  ↔  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  𝑧 )  ↔  ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 5 | 4 | albidv | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑥 )  →  ( ∀ 𝑦 ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  𝑧 )  ↔  ∀ 𝑦 ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 6 | 2 5 | spcev | ⊢ ( ∀ 𝑦 ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  𝑧 ) ) | 
						
							| 7 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 8 | 7 | brresi | ⊢ ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  ↔  ( 𝑥  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  ∧  𝑥 𝐹 𝑦 ) ) | 
						
							| 9 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  ↔  ∃! 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 10 |  | tz6.12-1 | ⊢ ( ( 𝑥 𝐹 𝑦  ∧  ∃! 𝑦 𝑥 𝐹 𝑦 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( ∃! 𝑦 𝑥 𝐹 𝑦  ∧  𝑥 𝐹 𝑦 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 12 | 9 11 | sylanb | ⊢ ( ( 𝑥  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  ∧  𝑥 𝐹 𝑦 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ( 𝑥  ∈  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 }  ∧  𝑥 𝐹 𝑦 )  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 14 | 8 13 | sylbi | ⊢ ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 15 | 6 14 | mpg | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  𝑧 ) | 
						
							| 16 | 15 | ax-gen | ⊢ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  𝑧 ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 18 |  | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } | 
						
							| 19 | 17 18 | nfres | ⊢ Ⅎ 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑦 𝐹 | 
						
							| 21 |  | nfeu1 | ⊢ Ⅎ 𝑦 ∃! 𝑦 𝑥 𝐹 𝑦 | 
						
							| 22 | 21 | nfab | ⊢ Ⅎ 𝑦 { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } | 
						
							| 23 | 20 22 | nfres | ⊢ Ⅎ 𝑦 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑧 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) | 
						
							| 25 | 19 23 24 | dffun3f | ⊢ ( Fun  ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } )  ↔  ( Rel  ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } )  ∧  ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦  →  𝑦  =  𝑧 ) ) ) | 
						
							| 26 | 1 16 25 | mpbir2an | ⊢ Fun  ( 𝐹  ↾  { 𝑥  ∣  ∃! 𝑦 𝑥 𝐹 𝑦 } ) |