Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) |
2 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
3 |
|
eqeq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 = 𝑧 ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = 𝑧 ) ↔ ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
5 |
4
|
albidv |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( ∀ 𝑦 ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = 𝑧 ) ↔ ∀ 𝑦 ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
6 |
2 5
|
spcev |
⊢ ( ∀ 𝑦 ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = 𝑧 ) ) |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
7
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ∧ 𝑥 𝐹 𝑦 ) ) |
9 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ↔ ∃! 𝑦 𝑥 𝐹 𝑦 ) |
10 |
|
tz6.12-1 |
⊢ ( ( 𝑥 𝐹 𝑦 ∧ ∃! 𝑦 𝑥 𝐹 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
11 |
10
|
ancoms |
⊢ ( ( ∃! 𝑦 𝑥 𝐹 𝑦 ∧ 𝑥 𝐹 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
12 |
9 11
|
sylanb |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ∧ 𝑥 𝐹 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
13 |
12
|
eqcomd |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ∧ 𝑥 𝐹 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
14 |
8 13
|
sylbi |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
15 |
6 14
|
mpg |
⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = 𝑧 ) |
16 |
15
|
ax-gen |
⊢ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = 𝑧 ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
18 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } |
19 |
17 18
|
nfres |
⊢ Ⅎ 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐹 |
21 |
|
nfeu1 |
⊢ Ⅎ 𝑦 ∃! 𝑦 𝑥 𝐹 𝑦 |
22 |
21
|
nfab |
⊢ Ⅎ 𝑦 { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } |
23 |
20 22
|
nfres |
⊢ Ⅎ 𝑦 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) |
25 |
19 23 24
|
dffun3f |
⊢ ( Fun ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ↔ ( Rel ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) ∧ ∀ 𝑥 ∃ 𝑧 ∀ 𝑦 ( 𝑥 ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) 𝑦 → 𝑦 = 𝑧 ) ) ) |
26 |
1 16 25
|
mpbir2an |
⊢ Fun ( 𝐹 ↾ { 𝑥 ∣ ∃! 𝑦 𝑥 𝐹 𝑦 } ) |