| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → 𝑛 = 𝐵 ) |
| 2 |
1
|
breq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → ( 𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝐵 ) ) |
| 3 |
2
|
rabbidv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } = { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ) → 𝑥 = 𝐴 ) |
| 5 |
4
|
oveq2d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ) → ( 𝑘 ↑𝑐 𝑥 ) = ( 𝑘 ↑𝑐 𝐴 ) ) |
| 6 |
3 5
|
sumeq12dv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑛 = 𝐵 ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) |
| 7 |
|
df-sgm |
⊢ σ = ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ) |
| 8 |
|
sumex |
⊢ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ∈ V |
| 9 |
6 7 8
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) |