Metamath Proof Explorer


Theorem sigarimcd

Description: Signed area takes value in complex numbers. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sigarimcd.sigar 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) )
sigarimcd.a ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) )
Assertion sigarimcd ( 𝜑 → ( 𝐴 𝐺 𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 sigarimcd.sigar 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) )
2 sigarimcd.a ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) )
3 1 sigarim ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) ∈ ℝ )
4 3 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) ∈ ℂ )
5 2 4 syl ( 𝜑 → ( 𝐴 𝐺 𝐵 ) ∈ ℂ )