Metamath Proof Explorer


Theorem sigarimcd

Description: Signed area takes value in complex numbers. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sigarimcd.sigar
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) )
sigarimcd.a
|- ( ph -> ( A e. CC /\ B e. CC ) )
Assertion sigarimcd
|- ( ph -> ( A G B ) e. CC )

Proof

Step Hyp Ref Expression
1 sigarimcd.sigar
 |-  G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) )
2 sigarimcd.a
 |-  ( ph -> ( A e. CC /\ B e. CC ) )
3 1 sigarim
 |-  ( ( A e. CC /\ B e. CC ) -> ( A G B ) e. RR )
4 3 recnd
 |-  ( ( A e. CC /\ B e. CC ) -> ( A G B ) e. CC )
5 2 4 syl
 |-  ( ph -> ( A G B ) e. CC )