Metamath Proof Explorer


Theorem sigariz

Description: If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sigarimcd.sigar
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) )
sigarimcd.a
|- ( ph -> ( A e. CC /\ B e. CC ) )
sigariz.a
|- ( ph -> ( A G B ) = 0 )
Assertion sigariz
|- ( ph -> ( B G A ) = 0 )

Proof

Step Hyp Ref Expression
1 sigarimcd.sigar
 |-  G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) )
2 sigarimcd.a
 |-  ( ph -> ( A e. CC /\ B e. CC ) )
3 sigariz.a
 |-  ( ph -> ( A G B ) = 0 )
4 1 sigarac
 |-  ( ( A e. CC /\ B e. CC ) -> ( A G B ) = -u ( B G A ) )
5 2 4 syl
 |-  ( ph -> ( A G B ) = -u ( B G A ) )
6 3 5 eqtr3d
 |-  ( ph -> 0 = -u ( B G A ) )
7 6 negeqd
 |-  ( ph -> -u 0 = -u -u ( B G A ) )
8 neg0
 |-  -u 0 = 0
9 8 a1i
 |-  ( ph -> -u 0 = 0 )
10 2 ancomd
 |-  ( ph -> ( B e. CC /\ A e. CC ) )
11 1 10 sigarimcd
 |-  ( ph -> ( B G A ) e. CC )
12 11 negnegd
 |-  ( ph -> -u -u ( B G A ) = ( B G A ) )
13 7 9 12 3eqtr3rd
 |-  ( ph -> ( B G A ) = 0 )