Step |
Hyp |
Ref |
Expression |
1 |
|
sigarimcd.sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
2 |
|
sigarimcd.a |
|- ( ph -> ( A e. CC /\ B e. CC ) ) |
3 |
|
sigariz.a |
|- ( ph -> ( A G B ) = 0 ) |
4 |
1
|
sigarac |
|- ( ( A e. CC /\ B e. CC ) -> ( A G B ) = -u ( B G A ) ) |
5 |
2 4
|
syl |
|- ( ph -> ( A G B ) = -u ( B G A ) ) |
6 |
3 5
|
eqtr3d |
|- ( ph -> 0 = -u ( B G A ) ) |
7 |
6
|
negeqd |
|- ( ph -> -u 0 = -u -u ( B G A ) ) |
8 |
|
neg0 |
|- -u 0 = 0 |
9 |
8
|
a1i |
|- ( ph -> -u 0 = 0 ) |
10 |
2
|
ancomd |
|- ( ph -> ( B e. CC /\ A e. CC ) ) |
11 |
1 10
|
sigarimcd |
|- ( ph -> ( B G A ) e. CC ) |
12 |
11
|
negnegd |
|- ( ph -> -u -u ( B G A ) = ( B G A ) ) |
13 |
7 9 12
|
3eqtr3rd |
|- ( ph -> ( B G A ) = 0 ) |