| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sigarcol.sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
| 2 |
|
sigarcol.a |
|- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
| 3 |
|
sigarcol.b |
|- ( ph -> -. A = B ) |
| 4 |
2
|
simp2d |
|- ( ph -> B e. CC ) |
| 5 |
2
|
simp3d |
|- ( ph -> C e. CC ) |
| 6 |
2
|
simp1d |
|- ( ph -> A e. CC ) |
| 7 |
4 5 6
|
3jca |
|- ( ph -> ( B e. CC /\ C e. CC /\ A e. CC ) ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( B e. CC /\ C e. CC /\ A e. CC ) ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> -. A = B ) |
| 10 |
1
|
sigarperm |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) G ( B - C ) ) = ( ( B - A ) G ( C - A ) ) ) |
| 11 |
2 10
|
syl |
|- ( ph -> ( ( A - C ) G ( B - C ) ) = ( ( B - A ) G ( C - A ) ) ) |
| 12 |
1
|
sigarperm |
|- ( ( B e. CC /\ C e. CC /\ A e. CC ) -> ( ( B - A ) G ( C - A ) ) = ( ( C - B ) G ( A - B ) ) ) |
| 13 |
7 12
|
syl |
|- ( ph -> ( ( B - A ) G ( C - A ) ) = ( ( C - B ) G ( A - B ) ) ) |
| 14 |
11 13
|
eqtrd |
|- ( ph -> ( ( A - C ) G ( B - C ) ) = ( ( C - B ) G ( A - B ) ) ) |
| 15 |
14
|
eqeq1d |
|- ( ph -> ( ( ( A - C ) G ( B - C ) ) = 0 <-> ( ( C - B ) G ( A - B ) ) = 0 ) ) |
| 16 |
15
|
biimpa |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( ( C - B ) G ( A - B ) ) = 0 ) |
| 17 |
1 8 9 16
|
sigardiv |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( ( C - B ) / ( A - B ) ) e. RR ) |
| 18 |
5 4
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( C - B ) e. CC ) |
| 20 |
6 4
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( A - B ) e. CC ) |
| 22 |
6
|
adantr |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> A e. CC ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> B e. CC ) |
| 24 |
9
|
neqned |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> A =/= B ) |
| 25 |
22 23 24
|
subne0d |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( A - B ) =/= 0 ) |
| 26 |
19 21 25
|
divcan1d |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( ( ( C - B ) / ( A - B ) ) x. ( A - B ) ) = ( C - B ) ) |
| 27 |
26
|
oveq2d |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( B + ( ( ( C - B ) / ( A - B ) ) x. ( A - B ) ) ) = ( B + ( C - B ) ) ) |
| 28 |
5
|
adantr |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> C e. CC ) |
| 29 |
23 28
|
pncan3d |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> ( B + ( C - B ) ) = C ) |
| 30 |
27 29
|
eqtr2d |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> C = ( B + ( ( ( C - B ) / ( A - B ) ) x. ( A - B ) ) ) ) |
| 31 |
|
oveq1 |
|- ( t = ( ( C - B ) / ( A - B ) ) -> ( t x. ( A - B ) ) = ( ( ( C - B ) / ( A - B ) ) x. ( A - B ) ) ) |
| 32 |
31
|
oveq2d |
|- ( t = ( ( C - B ) / ( A - B ) ) -> ( B + ( t x. ( A - B ) ) ) = ( B + ( ( ( C - B ) / ( A - B ) ) x. ( A - B ) ) ) ) |
| 33 |
32
|
rspceeqv |
|- ( ( ( ( C - B ) / ( A - B ) ) e. RR /\ C = ( B + ( ( ( C - B ) / ( A - B ) ) x. ( A - B ) ) ) ) -> E. t e. RR C = ( B + ( t x. ( A - B ) ) ) ) |
| 34 |
17 30 33
|
syl2anc |
|- ( ( ph /\ ( ( A - C ) G ( B - C ) ) = 0 ) -> E. t e. RR C = ( B + ( t x. ( A - B ) ) ) ) |
| 35 |
34
|
ex |
|- ( ph -> ( ( ( A - C ) G ( B - C ) ) = 0 -> E. t e. RR C = ( B + ( t x. ( A - B ) ) ) ) ) |
| 36 |
14
|
3ad2ant1 |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( A - C ) G ( B - C ) ) = ( ( C - B ) G ( A - B ) ) ) |
| 37 |
4
|
3ad2ant1 |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> B e. CC ) |
| 38 |
|
simp2 |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> t e. RR ) |
| 39 |
38
|
recnd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> t e. CC ) |
| 40 |
6
|
3ad2ant1 |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> A e. CC ) |
| 41 |
40 37
|
subcld |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( A - B ) e. CC ) |
| 42 |
39 41
|
mulcld |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( t x. ( A - B ) ) e. CC ) |
| 43 |
|
simp3 |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> C = ( B + ( t x. ( A - B ) ) ) ) |
| 44 |
37 42 43
|
mvrladdd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( C - B ) = ( t x. ( A - B ) ) ) |
| 45 |
44
|
oveq1d |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( C - B ) G ( A - B ) ) = ( ( t x. ( A - B ) ) G ( A - B ) ) ) |
| 46 |
39 41
|
mulcomd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( t x. ( A - B ) ) = ( ( A - B ) x. t ) ) |
| 47 |
46
|
oveq1d |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( t x. ( A - B ) ) G ( A - B ) ) = ( ( ( A - B ) x. t ) G ( A - B ) ) ) |
| 48 |
45 47
|
eqtrd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( C - B ) G ( A - B ) ) = ( ( ( A - B ) x. t ) G ( A - B ) ) ) |
| 49 |
41 39
|
mulcld |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( A - B ) x. t ) e. CC ) |
| 50 |
1
|
sigarac |
|- ( ( ( ( A - B ) x. t ) e. CC /\ ( A - B ) e. CC ) -> ( ( ( A - B ) x. t ) G ( A - B ) ) = -u ( ( A - B ) G ( ( A - B ) x. t ) ) ) |
| 51 |
49 41 50
|
syl2anc |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( ( A - B ) x. t ) G ( A - B ) ) = -u ( ( A - B ) G ( ( A - B ) x. t ) ) ) |
| 52 |
1
|
sigarls |
|- ( ( ( A - B ) e. CC /\ ( A - B ) e. CC /\ t e. RR ) -> ( ( A - B ) G ( ( A - B ) x. t ) ) = ( ( ( A - B ) G ( A - B ) ) x. t ) ) |
| 53 |
41 41 38 52
|
syl3anc |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( A - B ) G ( ( A - B ) x. t ) ) = ( ( ( A - B ) G ( A - B ) ) x. t ) ) |
| 54 |
1
|
sigarid |
|- ( ( A - B ) e. CC -> ( ( A - B ) G ( A - B ) ) = 0 ) |
| 55 |
41 54
|
syl |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( A - B ) G ( A - B ) ) = 0 ) |
| 56 |
55
|
oveq1d |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( ( A - B ) G ( A - B ) ) x. t ) = ( 0 x. t ) ) |
| 57 |
39
|
mul02d |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( 0 x. t ) = 0 ) |
| 58 |
53 56 57
|
3eqtrd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( A - B ) G ( ( A - B ) x. t ) ) = 0 ) |
| 59 |
58
|
negeqd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> -u ( ( A - B ) G ( ( A - B ) x. t ) ) = -u 0 ) |
| 60 |
|
neg0 |
|- -u 0 = 0 |
| 61 |
60
|
a1i |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> -u 0 = 0 ) |
| 62 |
51 59 61
|
3eqtrd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( ( A - B ) x. t ) G ( A - B ) ) = 0 ) |
| 63 |
36 48 62
|
3eqtrd |
|- ( ( ph /\ t e. RR /\ C = ( B + ( t x. ( A - B ) ) ) ) -> ( ( A - C ) G ( B - C ) ) = 0 ) |
| 64 |
63
|
rexlimdv3a |
|- ( ph -> ( E. t e. RR C = ( B + ( t x. ( A - B ) ) ) -> ( ( A - C ) G ( B - C ) ) = 0 ) ) |
| 65 |
35 64
|
impbid |
|- ( ph -> ( ( ( A - C ) G ( B - C ) ) = 0 <-> E. t e. RR C = ( B + ( t x. ( A - B ) ) ) ) ) |