Step |
Hyp |
Ref |
Expression |
1 |
|
sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
2 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
3 |
|
simp3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
4 |
1
|
sigarim |
|- ( ( B e. CC /\ C e. CC ) -> ( B G C ) e. RR ) |
5 |
4
|
recnd |
|- ( ( B e. CC /\ C e. CC ) -> ( B G C ) e. CC ) |
6 |
2 3 5
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B G C ) e. CC ) |
7 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
8 |
1
|
sigarim |
|- ( ( B e. CC /\ A e. CC ) -> ( B G A ) e. RR ) |
9 |
8
|
recnd |
|- ( ( B e. CC /\ A e. CC ) -> ( B G A ) e. CC ) |
10 |
2 7 9
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B G A ) e. CC ) |
11 |
6 10
|
negsubd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B G C ) + -u ( B G A ) ) = ( ( B G C ) - ( B G A ) ) ) |
12 |
1
|
sigarac |
|- ( ( A e. CC /\ B e. CC ) -> ( A G B ) = -u ( B G A ) ) |
13 |
7 2 12
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A G B ) = -u ( B G A ) ) |
14 |
13
|
eqcomd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> -u ( B G A ) = ( A G B ) ) |
15 |
14
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B G C ) + -u ( B G A ) ) = ( ( B G C ) + ( A G B ) ) ) |
16 |
11 15
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B G C ) - ( B G A ) ) = ( ( B G C ) + ( A G B ) ) ) |
17 |
16
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( B G C ) - ( B G A ) ) - ( A G C ) ) = ( ( ( B G C ) + ( A G B ) ) - ( A G C ) ) ) |
18 |
1
|
sigarexp |
|- ( ( B e. CC /\ C e. CC /\ A e. CC ) -> ( ( B - A ) G ( C - A ) ) = ( ( ( B G C ) - ( B G A ) ) - ( A G C ) ) ) |
19 |
18
|
3comr |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - A ) G ( C - A ) ) = ( ( ( B G C ) - ( B G A ) ) - ( A G C ) ) ) |
20 |
1
|
sigarexp |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) G ( B - C ) ) = ( ( ( A G B ) - ( A G C ) ) - ( C G B ) ) ) |
21 |
1
|
sigarim |
|- ( ( A e. CC /\ B e. CC ) -> ( A G B ) e. RR ) |
22 |
7 2 21
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A G B ) e. RR ) |
23 |
22
|
recnd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A G B ) e. CC ) |
24 |
1
|
sigarim |
|- ( ( A e. CC /\ C e. CC ) -> ( A G C ) e. RR ) |
25 |
7 3 24
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A G C ) e. RR ) |
26 |
25
|
recnd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A G C ) e. CC ) |
27 |
1
|
sigarim |
|- ( ( C e. CC /\ B e. CC ) -> ( C G B ) e. RR ) |
28 |
3 2 27
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C G B ) e. RR ) |
29 |
28
|
recnd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C G B ) e. CC ) |
30 |
23 26 29
|
sub32d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A G B ) - ( A G C ) ) - ( C G B ) ) = ( ( ( A G B ) - ( C G B ) ) - ( A G C ) ) ) |
31 |
6 23
|
addcomd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B G C ) + ( A G B ) ) = ( ( A G B ) + ( B G C ) ) ) |
32 |
1
|
sigarac |
|- ( ( B e. CC /\ C e. CC ) -> ( B G C ) = -u ( C G B ) ) |
33 |
2 3 32
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B G C ) = -u ( C G B ) ) |
34 |
33
|
eqcomd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> -u ( C G B ) = ( B G C ) ) |
35 |
34
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A G B ) + -u ( C G B ) ) = ( ( A G B ) + ( B G C ) ) ) |
36 |
23 29
|
negsubd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A G B ) + -u ( C G B ) ) = ( ( A G B ) - ( C G B ) ) ) |
37 |
31 35 36
|
3eqtr2rd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A G B ) - ( C G B ) ) = ( ( B G C ) + ( A G B ) ) ) |
38 |
37
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A G B ) - ( C G B ) ) - ( A G C ) ) = ( ( ( B G C ) + ( A G B ) ) - ( A G C ) ) ) |
39 |
20 30 38
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) G ( B - C ) ) = ( ( ( B G C ) + ( A G B ) ) - ( A G C ) ) ) |
40 |
17 19 39
|
3eqtr4rd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) G ( B - C ) ) = ( ( B - A ) G ( C - A ) ) ) |