Metamath Proof Explorer


Theorem sigarperm

Description: Signed area ( A - C ) G ( B - C ) acts as a double area of a triangle A B C . Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017)

Ref Expression
Hypothesis sigar G = x , y x y
Assertion sigarperm A B C A C G B C = B A G C A

Proof

Step Hyp Ref Expression
1 sigar G = x , y x y
2 simp2 A B C B
3 simp3 A B C C
4 1 sigarim B C B G C
5 4 recnd B C B G C
6 2 3 5 syl2anc A B C B G C
7 simp1 A B C A
8 1 sigarim B A B G A
9 8 recnd B A B G A
10 2 7 9 syl2anc A B C B G A
11 6 10 negsubd A B C B G C + B G A = B G C B G A
12 1 sigarac A B A G B = B G A
13 7 2 12 syl2anc A B C A G B = B G A
14 13 eqcomd A B C B G A = A G B
15 14 oveq2d A B C B G C + B G A = B G C + A G B
16 11 15 eqtr3d A B C B G C B G A = B G C + A G B
17 16 oveq1d A B C B G C - B G A - A G C = B G C + A G B - A G C
18 1 sigarexp B C A B A G C A = B G C - B G A - A G C
19 18 3comr A B C B A G C A = B G C - B G A - A G C
20 1 sigarexp A B C A C G B C = A G B - A G C - C G B
21 1 sigarim A B A G B
22 7 2 21 syl2anc A B C A G B
23 22 recnd A B C A G B
24 1 sigarim A C A G C
25 7 3 24 syl2anc A B C A G C
26 25 recnd A B C A G C
27 1 sigarim C B C G B
28 3 2 27 syl2anc A B C C G B
29 28 recnd A B C C G B
30 23 26 29 sub32d A B C A G B - A G C - C G B = A G B - C G B - A G C
31 6 23 addcomd A B C B G C + A G B = A G B + B G C
32 1 sigarac B C B G C = C G B
33 2 3 32 syl2anc A B C B G C = C G B
34 33 eqcomd A B C C G B = B G C
35 34 oveq2d A B C A G B + C G B = A G B + B G C
36 23 29 negsubd A B C A G B + C G B = A G B C G B
37 31 35 36 3eqtr2rd A B C A G B C G B = B G C + A G B
38 37 oveq1d A B C A G B - C G B - A G C = B G C + A G B - A G C
39 20 30 38 3eqtrd A B C A C G B C = B G C + A G B - A G C
40 17 19 39 3eqtr4rd A B C A C G B C = B A G C A