Metamath Proof Explorer


Theorem sigarperm

Description: Signed area ( A - C ) G ( B - C ) acts as a double area of a triangle A B C . Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017)

Ref Expression
Hypothesis sigar G=x,yxy
Assertion sigarperm ABCACGBC=BAGCA

Proof

Step Hyp Ref Expression
1 sigar G=x,yxy
2 simp2 ABCB
3 simp3 ABCC
4 1 sigarim BCBGC
5 4 recnd BCBGC
6 2 3 5 syl2anc ABCBGC
7 simp1 ABCA
8 1 sigarim BABGA
9 8 recnd BABGA
10 2 7 9 syl2anc ABCBGA
11 6 10 negsubd ABCBGC+BGA=BGCBGA
12 1 sigarac ABAGB=BGA
13 7 2 12 syl2anc ABCAGB=BGA
14 13 eqcomd ABCBGA=AGB
15 14 oveq2d ABCBGC+BGA=BGC+AGB
16 11 15 eqtr3d ABCBGCBGA=BGC+AGB
17 16 oveq1d ABCBGC-BGA-AGC=BGC+AGB-AGC
18 1 sigarexp BCABAGCA=BGC-BGA-AGC
19 18 3comr ABCBAGCA=BGC-BGA-AGC
20 1 sigarexp ABCACGBC=AGB-AGC-CGB
21 1 sigarim ABAGB
22 7 2 21 syl2anc ABCAGB
23 22 recnd ABCAGB
24 1 sigarim ACAGC
25 7 3 24 syl2anc ABCAGC
26 25 recnd ABCAGC
27 1 sigarim CBCGB
28 3 2 27 syl2anc ABCCGB
29 28 recnd ABCCGB
30 23 26 29 sub32d ABCAGB-AGC-CGB=AGB-CGB-AGC
31 6 23 addcomd ABCBGC+AGB=AGB+BGC
32 1 sigarac BCBGC=CGB
33 2 3 32 syl2anc ABCBGC=CGB
34 33 eqcomd ABCCGB=BGC
35 34 oveq2d ABCAGB+CGB=AGB+BGC
36 23 29 negsubd ABCAGB+CGB=AGBCGB
37 31 35 36 3eqtr2rd ABCAGBCGB=BGC+AGB
38 37 oveq1d ABCAGB-CGB-AGC=BGC+AGB-AGC
39 20 30 38 3eqtrd ABCACGBC=BGC+AGB-AGC
40 17 19 39 3eqtr4rd ABCACGBC=BAGCA