Metamath Proof Explorer


Theorem sigardiv

Description: If signed area between vectors B - A and C - A is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017)

Ref Expression
Hypotheses sigar G=x,yxy
sigardiv.a φABC
sigardiv.b φ¬C=A
sigardiv.c φBAGCA=0
Assertion sigardiv φBACA

Proof

Step Hyp Ref Expression
1 sigar G=x,yxy
2 sigardiv.a φABC
3 sigardiv.b φ¬C=A
4 sigardiv.c φBAGCA=0
5 2 simp2d φB
6 2 simp1d φA
7 5 6 subcld φBA
8 2 simp3d φC
9 8 6 subcld φCA
10 3 neqned φCA
11 8 6 10 subne0d φCA0
12 7 9 11 cjdivd φBACA=BACA
13 7 cjcld φBA
14 9 cjcld φCA
15 9 11 cjne0d φCA0
16 13 14 9 15 11 divcan5rd φBACACACA=BACA
17 13 9 mulcld φBACA
18 1 sigarval BACABAGCA=BACA
19 7 9 18 syl2anc φBAGCA=BACA
20 19 4 eqtr3d φBACA=0
21 17 20 reim0bd φBACA
22 9 14 mulcomd φCACA=CACA
23 9 cjmulrcld φCACA
24 22 23 eqeltrrd φCACA
25 14 9 15 11 mulne0d φCACA0
26 21 24 25 redivcld φBACACACA
27 16 26 eqeltrrd φBACA
28 12 27 eqeltrd φBACA
29 28 cjred φBACA=BACA
30 7 9 11 divcld φBACA
31 30 cjcjd φBACA=BACA
32 29 31 eqtr3d φBACA=BACA
33 32 28 eqeltrrd φBACA