| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sigar |
|
| 2 |
|
sigardiv.a |
|
| 3 |
|
sigardiv.b |
|
| 4 |
|
sigardiv.c |
|
| 5 |
2
|
simp2d |
|
| 6 |
2
|
simp1d |
|
| 7 |
5 6
|
subcld |
|
| 8 |
2
|
simp3d |
|
| 9 |
8 6
|
subcld |
|
| 10 |
3
|
neqned |
|
| 11 |
8 6 10
|
subne0d |
|
| 12 |
7 9 11
|
cjdivd |
|
| 13 |
7
|
cjcld |
|
| 14 |
9
|
cjcld |
|
| 15 |
9 11
|
cjne0d |
|
| 16 |
13 14 9 15 11
|
divcan5rd |
|
| 17 |
13 9
|
mulcld |
|
| 18 |
1
|
sigarval |
|
| 19 |
7 9 18
|
syl2anc |
|
| 20 |
19 4
|
eqtr3d |
|
| 21 |
17 20
|
reim0bd |
|
| 22 |
9 14
|
mulcomd |
|
| 23 |
9
|
cjmulrcld |
|
| 24 |
22 23
|
eqeltrrd |
|
| 25 |
14 9 15 11
|
mulne0d |
|
| 26 |
21 24 25
|
redivcld |
|
| 27 |
16 26
|
eqeltrrd |
|
| 28 |
12 27
|
eqeltrd |
|
| 29 |
28
|
cjred |
|
| 30 |
7 9 11
|
divcld |
|
| 31 |
30
|
cjcjd |
|
| 32 |
29 31
|
eqtr3d |
|
| 33 |
32 28
|
eqeltrrd |
|