Metamath Proof Explorer


Theorem divcan5rd

Description: Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divmuld.3 φC
divmuld.4 φB0
divdiv23d.5 φC0
Assertion divcan5rd φACBC=AB

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divmuld.3 φC
4 divmuld.4 φB0
5 divdiv23d.5 φC0
6 1 3 mulcomd φAC=CA
7 2 3 mulcomd φBC=CB
8 6 7 oveq12d φACBC=CACB
9 1 2 3 4 5 divcan5d φCACB=AB
10 8 9 eqtrd φACBC=AB