Metamath Proof Explorer


Theorem sigarac

Description: Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017)

Ref Expression
Hypothesis sigar G = x , y x y
Assertion sigarac A B A G B = B G A

Proof

Step Hyp Ref Expression
1 sigar G = x , y x y
2 1 sigarval A B A G B = A B
3 cjcl B B
4 3 adantl A B B
5 simpl A B A
6 4 5 cjmuld A B B A = B A
7 simpr A B B
8 7 cjcjd A B B = B
9 8 oveq1d A B B A = B A
10 5 cjcld A B A
11 7 10 mulcomd A B B A = A B
12 6 9 11 3eqtrrd A B A B = B A
13 12 fveq2d A B A B = B A
14 4 5 mulcld A B B A
15 14 imcjd A B B A = B A
16 2 13 15 3eqtrd A B A G B = B A
17 1 sigarval B A B G A = B A
18 17 ancoms A B B G A = B A
19 18 negeqd A B B G A = B A
20 16 19 eqtr4d A B A G B = B G A