Metamath Proof Explorer


Theorem sigarac

Description: Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017)

Ref Expression
Hypothesis sigar G=x,yxy
Assertion sigarac ABAGB=BGA

Proof

Step Hyp Ref Expression
1 sigar G=x,yxy
2 1 sigarval ABAGB=AB
3 cjcl BB
4 3 adantl ABB
5 simpl ABA
6 4 5 cjmuld ABBA=BA
7 simpr ABB
8 7 cjcjd ABB=B
9 8 oveq1d ABBA=BA
10 5 cjcld ABA
11 7 10 mulcomd ABBA=AB
12 6 9 11 3eqtrrd ABAB=BA
13 12 fveq2d ABAB=BA
14 4 5 mulcld ABBA
15 14 imcjd ABBA=BA
16 2 13 15 3eqtrd ABAGB=BA
17 1 sigarval BABGA=BA
18 17 ancoms ABBGA=BA
19 18 negeqd ABBGA=BA
20 16 19 eqtr4d ABAGB=BGA