Metamath Proof Explorer


Theorem sigaraf

Description: Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017)

Ref Expression
Hypothesis sigar G=x,yxy
Assertion sigaraf ABCA+CGB=AGB+CGB

Proof

Step Hyp Ref Expression
1 sigar G=x,yxy
2 cjadd ACA+C=A+C
3 2 oveq1d ACA+CB=A+CB
4 3 3adant2 ABCA+CB=A+CB
5 simp1 ABCA
6 5 cjcld ABCA
7 simp3 ABCC
8 7 cjcld ABCC
9 simp2 ABCB
10 6 8 9 adddird ABCA+CB=AB+CB
11 4 10 eqtrd ABCA+CB=AB+CB
12 11 fveq2d ABCA+CB=AB+CB
13 6 9 mulcld ABCAB
14 8 9 mulcld ABCCB
15 13 14 imaddd ABCAB+CB=AB+CB
16 12 15 eqtrd ABCA+CB=AB+CB
17 5 7 addcld ABCA+C
18 1 sigarval A+CBA+CGB=A+CB
19 17 9 18 syl2anc ABCA+CGB=A+CB
20 1 sigarval ABAGB=AB
21 20 3adant3 ABCAGB=AB
22 3simpc ABCBC
23 22 ancomd ABCCB
24 1 sigarval CBCGB=CB
25 23 24 syl ABCCGB=CB
26 21 25 oveq12d ABCAGB+CGB=AB+CB
27 16 19 26 3eqtr4d ABCA+CGB=AGB+CGB