| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sigar |
⊢ 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) ) |
| 2 |
|
cjadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐶 ) ) ) |
| 3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 + 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐶 ) ) · 𝐵 ) ) |
| 4 |
3
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 + 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐶 ) ) · 𝐵 ) ) |
| 5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 6 |
5
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
| 8 |
7
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ∗ ‘ 𝐶 ) ∈ ℂ ) |
| 9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 10 |
6 8 9
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) + ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
| 11 |
4 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 + 𝐶 ) ) · 𝐵 ) = ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) + ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 + 𝐶 ) ) · 𝐵 ) ) = ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) + ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
| 13 |
6 9
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ∈ ℂ ) |
| 14 |
8 9
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ∈ ℂ ) |
| 15 |
13 14
|
imaddd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ℑ ‘ ( ( ( ∗ ‘ 𝐴 ) · 𝐵 ) + ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) + ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
| 16 |
12 15
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 + 𝐶 ) ) · 𝐵 ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) + ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
| 17 |
5 7
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
| 18 |
1
|
sigarval |
⊢ ( ( ( 𝐴 + 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 + 𝐶 ) ) · 𝐵 ) ) ) |
| 19 |
17 9 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝐴 + 𝐶 ) ) · 𝐵 ) ) ) |
| 20 |
1
|
sigarval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
| 21 |
20
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) ) |
| 22 |
|
3simpc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 23 |
22
|
ancomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 24 |
1
|
sigarval |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐵 ) = ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
| 26 |
21 25
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 𝐺 𝐵 ) + ( 𝐶 𝐺 𝐵 ) ) = ( ( ℑ ‘ ( ( ∗ ‘ 𝐴 ) · 𝐵 ) ) + ( ℑ ‘ ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) ) |
| 27 |
16 19 26
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) 𝐺 𝐵 ) = ( ( 𝐴 𝐺 𝐵 ) + ( 𝐶 𝐺 𝐵 ) ) ) |