| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sigar |
⊢ 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) ) |
| 2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
| 4 |
1
|
sigarim |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐶 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐶 ) ∈ ℂ ) |
| 6 |
2 3 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐶 ) ∈ ℂ ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 8 |
1
|
sigarim |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℂ ) |
| 10 |
2 7 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℂ ) |
| 11 |
6 10
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 𝐺 𝐶 ) + - ( 𝐵 𝐺 𝐴 ) ) = ( ( 𝐵 𝐺 𝐶 ) − ( 𝐵 𝐺 𝐴 ) ) ) |
| 12 |
1
|
sigarac |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( 𝐵 𝐺 𝐴 ) ) |
| 13 |
7 2 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( 𝐵 𝐺 𝐴 ) ) |
| 14 |
13
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( 𝐵 𝐺 𝐴 ) = ( 𝐴 𝐺 𝐵 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 𝐺 𝐶 ) + - ( 𝐵 𝐺 𝐴 ) ) = ( ( 𝐵 𝐺 𝐶 ) + ( 𝐴 𝐺 𝐵 ) ) ) |
| 16 |
11 15
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 𝐺 𝐶 ) − ( 𝐵 𝐺 𝐴 ) ) = ( ( 𝐵 𝐺 𝐶 ) + ( 𝐴 𝐺 𝐵 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 𝐺 𝐶 ) − ( 𝐵 𝐺 𝐴 ) ) − ( 𝐴 𝐺 𝐶 ) ) = ( ( ( 𝐵 𝐺 𝐶 ) + ( 𝐴 𝐺 𝐵 ) ) − ( 𝐴 𝐺 𝐶 ) ) ) |
| 18 |
1
|
sigarexp |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 − 𝐴 ) 𝐺 ( 𝐶 − 𝐴 ) ) = ( ( ( 𝐵 𝐺 𝐶 ) − ( 𝐵 𝐺 𝐴 ) ) − ( 𝐴 𝐺 𝐶 ) ) ) |
| 19 |
18
|
3comr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐴 ) 𝐺 ( 𝐶 − 𝐴 ) ) = ( ( ( 𝐵 𝐺 𝐶 ) − ( 𝐵 𝐺 𝐴 ) ) − ( 𝐴 𝐺 𝐶 ) ) ) |
| 20 |
1
|
sigarexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) 𝐺 ( 𝐵 − 𝐶 ) ) = ( ( ( 𝐴 𝐺 𝐵 ) − ( 𝐴 𝐺 𝐶 ) ) − ( 𝐶 𝐺 𝐵 ) ) ) |
| 21 |
1
|
sigarim |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) ∈ ℝ ) |
| 22 |
7 2 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) ∈ ℂ ) |
| 24 |
1
|
sigarim |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐶 ) ∈ ℝ ) |
| 25 |
7 3 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐶 ) ∈ ℝ ) |
| 26 |
25
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐶 ) ∈ ℂ ) |
| 27 |
1
|
sigarim |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 𝐺 𝐵 ) ∈ ℝ ) |
| 28 |
3 2 27
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐵 ) ∈ ℝ ) |
| 29 |
28
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐵 ) ∈ ℂ ) |
| 30 |
23 26 29
|
sub32d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 𝐺 𝐵 ) − ( 𝐴 𝐺 𝐶 ) ) − ( 𝐶 𝐺 𝐵 ) ) = ( ( ( 𝐴 𝐺 𝐵 ) − ( 𝐶 𝐺 𝐵 ) ) − ( 𝐴 𝐺 𝐶 ) ) ) |
| 31 |
6 23
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 𝐺 𝐶 ) + ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝐴 𝐺 𝐵 ) + ( 𝐵 𝐺 𝐶 ) ) ) |
| 32 |
1
|
sigarac |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐶 ) = - ( 𝐶 𝐺 𝐵 ) ) |
| 33 |
2 3 32
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐶 ) = - ( 𝐶 𝐺 𝐵 ) ) |
| 34 |
33
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( 𝐶 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐶 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 𝐺 𝐵 ) + - ( 𝐶 𝐺 𝐵 ) ) = ( ( 𝐴 𝐺 𝐵 ) + ( 𝐵 𝐺 𝐶 ) ) ) |
| 36 |
23 29
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 𝐺 𝐵 ) + - ( 𝐶 𝐺 𝐵 ) ) = ( ( 𝐴 𝐺 𝐵 ) − ( 𝐶 𝐺 𝐵 ) ) ) |
| 37 |
31 35 36
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 𝐺 𝐵 ) − ( 𝐶 𝐺 𝐵 ) ) = ( ( 𝐵 𝐺 𝐶 ) + ( 𝐴 𝐺 𝐵 ) ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 𝐺 𝐵 ) − ( 𝐶 𝐺 𝐵 ) ) − ( 𝐴 𝐺 𝐶 ) ) = ( ( ( 𝐵 𝐺 𝐶 ) + ( 𝐴 𝐺 𝐵 ) ) − ( 𝐴 𝐺 𝐶 ) ) ) |
| 39 |
20 30 38
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) 𝐺 ( 𝐵 − 𝐶 ) ) = ( ( ( 𝐵 𝐺 𝐶 ) + ( 𝐴 𝐺 𝐵 ) ) − ( 𝐴 𝐺 𝐶 ) ) ) |
| 40 |
17 19 39
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) 𝐺 ( 𝐵 − 𝐶 ) ) = ( ( 𝐵 − 𝐴 ) 𝐺 ( 𝐶 − 𝐴 ) ) ) |