| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
| 2 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
| 3 |
|
simp3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
| 4 |
2 3
|
subcld |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 5 |
1
|
sigarmf |
|- ( ( A e. CC /\ ( B - C ) e. CC /\ C e. CC ) -> ( ( A - C ) G ( B - C ) ) = ( ( A G ( B - C ) ) - ( C G ( B - C ) ) ) ) |
| 6 |
4 5
|
syld3an2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) G ( B - C ) ) = ( ( A G ( B - C ) ) - ( C G ( B - C ) ) ) ) |
| 7 |
1
|
sigarms |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A G ( B - C ) ) = ( ( A G B ) - ( A G C ) ) ) |
| 8 |
7
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A G ( B - C ) ) - ( C G ( B - C ) ) ) = ( ( ( A G B ) - ( A G C ) ) - ( C G ( B - C ) ) ) ) |
| 9 |
1
|
sigarms |
|- ( ( C e. CC /\ B e. CC /\ C e. CC ) -> ( C G ( B - C ) ) = ( ( C G B ) - ( C G C ) ) ) |
| 10 |
3 9
|
syld3an1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C G ( B - C ) ) = ( ( C G B ) - ( C G C ) ) ) |
| 11 |
1
|
sigarid |
|- ( C e. CC -> ( C G C ) = 0 ) |
| 12 |
3 11
|
syl |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C G C ) = 0 ) |
| 13 |
12
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C G B ) - ( C G C ) ) = ( ( C G B ) - 0 ) ) |
| 14 |
1
|
sigarim |
|- ( ( C e. CC /\ B e. CC ) -> ( C G B ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( C e. CC /\ B e. CC ) -> ( C G B ) e. CC ) |
| 16 |
3 2 15
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C G B ) e. CC ) |
| 17 |
16
|
subid1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C G B ) - 0 ) = ( C G B ) ) |
| 18 |
10 13 17
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C G ( B - C ) ) = ( C G B ) ) |
| 19 |
18
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A G B ) - ( A G C ) ) - ( C G ( B - C ) ) ) = ( ( ( A G B ) - ( A G C ) ) - ( C G B ) ) ) |
| 20 |
6 8 19
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) G ( B - C ) ) = ( ( ( A G B ) - ( A G C ) ) - ( C G B ) ) ) |