| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slt2addd.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | slt2addd.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | slt2addd.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | slt2addd.4 | ⊢ ( 𝜑  →  𝐷  ∈   No  ) | 
						
							| 5 |  | slt2addd.5 | ⊢ ( 𝜑  →  𝐴  <s  𝐶 ) | 
						
							| 6 |  | slt2addd.6 | ⊢ ( 𝜑  →  𝐵  <s  𝐷 ) | 
						
							| 7 | 1 2 | addscld | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  ∈   No  ) | 
						
							| 8 | 3 2 | addscld | ⊢ ( 𝜑  →  ( 𝐶  +s  𝐵 )  ∈   No  ) | 
						
							| 9 | 3 4 | addscld | ⊢ ( 𝜑  →  ( 𝐶  +s  𝐷 )  ∈   No  ) | 
						
							| 10 | 1 3 2 | sltadd1d | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐶  ↔  ( 𝐴  +s  𝐵 )  <s  ( 𝐶  +s  𝐵 ) ) ) | 
						
							| 11 | 5 10 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  <s  ( 𝐶  +s  𝐵 ) ) | 
						
							| 12 | 2 4 3 | sltadd2d | ⊢ ( 𝜑  →  ( 𝐵  <s  𝐷  ↔  ( 𝐶  +s  𝐵 )  <s  ( 𝐶  +s  𝐷 ) ) ) | 
						
							| 13 | 6 12 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  +s  𝐵 )  <s  ( 𝐶  +s  𝐷 ) ) | 
						
							| 14 | 7 8 9 11 13 | slttrd | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  <s  ( 𝐶  +s  𝐷 ) ) |