| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 2 | 1 1 | pm3.2i | ⊢ (  0s   ∈   No   ∧   0s   ∈   No  ) | 
						
							| 3 |  | mulsprop | ⊢ ( ( (  0s   ∈   No   ∧   0s   ∈   No  )  ∧  ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐶  ∈   No   ∧  𝐷  ∈   No  ) )  →  ( (  0s   ·s   0s  )  ∈   No   ∧  ( ( 𝐴  <s  𝐵  ∧  𝐶  <s  𝐷 )  →  ( ( 𝐴  ·s  𝐷 )  -s  ( 𝐴  ·s  𝐶 ) )  <s  ( ( 𝐵  ·s  𝐷 )  -s  ( 𝐵  ·s  𝐶 ) ) ) ) ) | 
						
							| 4 | 2 3 | mp3an1 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐶  ∈   No   ∧  𝐷  ∈   No  ) )  →  ( (  0s   ·s   0s  )  ∈   No   ∧  ( ( 𝐴  <s  𝐵  ∧  𝐶  <s  𝐷 )  →  ( ( 𝐴  ·s  𝐷 )  -s  ( 𝐴  ·s  𝐶 ) )  <s  ( ( 𝐵  ·s  𝐷 )  -s  ( 𝐵  ·s  𝐶 ) ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( 𝐶  ∈   No   ∧  𝐷  ∈   No  ) )  →  ( ( 𝐴  <s  𝐵  ∧  𝐶  <s  𝐷 )  →  ( ( 𝐴  ·s  𝐷 )  -s  ( 𝐴  ·s  𝐶 ) )  <s  ( ( 𝐵  ·s  𝐷 )  -s  ( 𝐵  ·s  𝐶 ) ) ) ) |