Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltmulneg.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| sltmulneg.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| sltmulneg.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| sltmulneg.4 | ⊢ ( 𝜑 → 𝐶 <s 0s ) | ||
| Assertion | sltmulneg2d | ⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltmulneg.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | sltmulneg.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | sltmulneg.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | sltmulneg.4 | ⊢ ( 𝜑 → 𝐶 <s 0s ) | |
| 5 | 1 2 3 4 | sltmulneg1d | ⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 6 | 2 3 | mulscomd | ⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) ) |
| 7 | 1 3 | mulscomd | ⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) ) |
| 8 | 6 7 | breq12d | ⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) ) |
| 9 | 5 8 | bitrd | ⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) ) |