| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulscan2d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | mulscan2d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | mulscan2d.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | mulscan2dlem.1 | ⊢ ( 𝜑  →   0s   <s  𝐶 ) | 
						
							| 5 | 1 2 3 4 | slemul1d | ⊢ ( 𝜑  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  ·s  𝐶 )  ≤s  ( 𝐵  ·s  𝐶 ) ) ) | 
						
							| 6 | 2 1 3 4 | slemul1d | ⊢ ( 𝜑  →  ( 𝐵  ≤s  𝐴  ↔  ( 𝐵  ·s  𝐶 )  ≤s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐴  ≤s  𝐵  ∧  𝐵  ≤s  𝐴 )  ↔  ( ( 𝐴  ·s  𝐶 )  ≤s  ( 𝐵  ·s  𝐶 )  ∧  ( 𝐵  ·s  𝐶 )  ≤s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 8 |  | sletri3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  ≤s  𝐵  ∧  𝐵  ≤s  𝐴 ) ) ) | 
						
							| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  ≤s  𝐵  ∧  𝐵  ≤s  𝐴 ) ) ) | 
						
							| 10 | 1 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐶 )  ∈   No  ) | 
						
							| 11 | 2 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐵  ·s  𝐶 )  ∈   No  ) | 
						
							| 12 |  | sletri3 | ⊢ ( ( ( 𝐴  ·s  𝐶 )  ∈   No   ∧  ( 𝐵  ·s  𝐶 )  ∈   No  )  →  ( ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 )  ↔  ( ( 𝐴  ·s  𝐶 )  ≤s  ( 𝐵  ·s  𝐶 )  ∧  ( 𝐵  ·s  𝐶 )  ≤s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 13 | 10 11 12 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 )  ↔  ( ( 𝐴  ·s  𝐶 )  ≤s  ( 𝐵  ·s  𝐶 )  ∧  ( 𝐵  ·s  𝐶 )  ≤s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 14 | 7 9 13 | 3bitr4rd | ⊢ ( 𝜑  →  ( ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 )  ↔  𝐴  =  𝐵 ) ) |