| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulscan2d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | mulscan2d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | mulscan2d.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | mulscan2d.4 | ⊢ ( 𝜑  →  𝐶  ≠   0s  ) | 
						
							| 5 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 6 |  | sltneg | ⊢ ( ( 𝐶  ∈   No   ∧   0s   ∈   No  )  →  ( 𝐶  <s   0s   ↔  (  -us  ‘  0s  )  <s  (  -us  ‘ 𝐶 ) ) ) | 
						
							| 7 | 3 5 6 | sylancl | ⊢ ( 𝜑  →  ( 𝐶  <s   0s   ↔  (  -us  ‘  0s  )  <s  (  -us  ‘ 𝐶 ) ) ) | 
						
							| 8 |  | negs0s | ⊢ (  -us  ‘  0s  )  =   0s | 
						
							| 9 | 8 | breq1i | ⊢ ( (  -us  ‘  0s  )  <s  (  -us  ‘ 𝐶 )  ↔   0s   <s  (  -us  ‘ 𝐶 ) ) | 
						
							| 10 | 7 9 | bitrdi | ⊢ ( 𝜑  →  ( 𝐶  <s   0s   ↔   0s   <s  (  -us  ‘ 𝐶 ) ) ) | 
						
							| 11 | 1 3 | mulnegs2d | ⊢ ( 𝜑  →  ( 𝐴  ·s  (  -us  ‘ 𝐶 ) )  =  (  -us  ‘ ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 12 | 2 3 | mulnegs2d | ⊢ ( 𝜑  →  ( 𝐵  ·s  (  -us  ‘ 𝐶 ) )  =  (  -us  ‘ ( 𝐵  ·s  𝐶 ) ) ) | 
						
							| 13 | 11 12 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝐴  ·s  (  -us  ‘ 𝐶 ) )  =  ( 𝐵  ·s  (  -us  ‘ 𝐶 ) )  ↔  (  -us  ‘ ( 𝐴  ·s  𝐶 ) )  =  (  -us  ‘ ( 𝐵  ·s  𝐶 ) ) ) ) | 
						
							| 14 | 1 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐶 )  ∈   No  ) | 
						
							| 15 | 2 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐵  ·s  𝐶 )  ∈   No  ) | 
						
							| 16 |  | negs11 | ⊢ ( ( ( 𝐴  ·s  𝐶 )  ∈   No   ∧  ( 𝐵  ·s  𝐶 )  ∈   No  )  →  ( (  -us  ‘ ( 𝐴  ·s  𝐶 ) )  =  (  -us  ‘ ( 𝐵  ·s  𝐶 ) )  ↔  ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 ) ) ) | 
						
							| 17 | 14 15 16 | syl2anc | ⊢ ( 𝜑  →  ( (  -us  ‘ ( 𝐴  ·s  𝐶 ) )  =  (  -us  ‘ ( 𝐵  ·s  𝐶 ) )  ↔  ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 ) ) ) | 
						
							| 18 | 13 17 | bitrd | ⊢ ( 𝜑  →  ( ( 𝐴  ·s  (  -us  ‘ 𝐶 ) )  =  ( 𝐵  ·s  (  -us  ‘ 𝐶 ) )  ↔  ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧   0s   <s  (  -us  ‘ 𝐶 ) )  →  ( ( 𝐴  ·s  (  -us  ‘ 𝐶 ) )  =  ( 𝐵  ·s  (  -us  ‘ 𝐶 ) )  ↔  ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 ) ) ) | 
						
							| 20 | 1 | adantr | ⊢ ( ( 𝜑  ∧   0s   <s  (  -us  ‘ 𝐶 ) )  →  𝐴  ∈   No  ) | 
						
							| 21 | 2 | adantr | ⊢ ( ( 𝜑  ∧   0s   <s  (  -us  ‘ 𝐶 ) )  →  𝐵  ∈   No  ) | 
						
							| 22 | 3 | negscld | ⊢ ( 𝜑  →  (  -us  ‘ 𝐶 )  ∈   No  ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧   0s   <s  (  -us  ‘ 𝐶 ) )  →  (  -us  ‘ 𝐶 )  ∈   No  ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧   0s   <s  (  -us  ‘ 𝐶 ) )  →   0s   <s  (  -us  ‘ 𝐶 ) ) | 
						
							| 25 | 20 21 23 24 | mulscan2dlem | ⊢ ( ( 𝜑  ∧   0s   <s  (  -us  ‘ 𝐶 ) )  →  ( ( 𝐴  ·s  (  -us  ‘ 𝐶 ) )  =  ( 𝐵  ·s  (  -us  ‘ 𝐶 ) )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 26 | 19 25 | bitr3d | ⊢ ( ( 𝜑  ∧   0s   <s  (  -us  ‘ 𝐶 ) )  →  ( ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 27 | 10 26 | sylbida | ⊢ ( ( 𝜑  ∧  𝐶  <s   0s  )  →  ( ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 28 | 1 | adantr | ⊢ ( ( 𝜑  ∧   0s   <s  𝐶 )  →  𝐴  ∈   No  ) | 
						
							| 29 | 2 | adantr | ⊢ ( ( 𝜑  ∧   0s   <s  𝐶 )  →  𝐵  ∈   No  ) | 
						
							| 30 | 3 | adantr | ⊢ ( ( 𝜑  ∧   0s   <s  𝐶 )  →  𝐶  ∈   No  ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝜑  ∧   0s   <s  𝐶 )  →   0s   <s  𝐶 ) | 
						
							| 32 | 28 29 30 31 | mulscan2dlem | ⊢ ( ( 𝜑  ∧   0s   <s  𝐶 )  →  ( ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 33 |  | slttrine | ⊢ ( ( 𝐶  ∈   No   ∧   0s   ∈   No  )  →  ( 𝐶  ≠   0s   ↔  ( 𝐶  <s   0s   ∨   0s   <s  𝐶 ) ) ) | 
						
							| 34 | 3 5 33 | sylancl | ⊢ ( 𝜑  →  ( 𝐶  ≠   0s   ↔  ( 𝐶  <s   0s   ∨   0s   <s  𝐶 ) ) ) | 
						
							| 35 | 4 34 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  <s   0s   ∨   0s   <s  𝐶 ) ) | 
						
							| 36 | 27 32 35 | mpjaodan | ⊢ ( 𝜑  →  ( ( 𝐴  ·s  𝐶 )  =  ( 𝐵  ·s  𝐶 )  ↔  𝐴  =  𝐵 ) ) |