| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulscan2d.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | mulscan2d.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | mulscan2d.3 |  |-  ( ph -> C e. No ) | 
						
							| 4 |  | mulscan2dlem.1 |  |-  ( ph -> 0s  | 
						
							| 5 | 1 2 3 4 | slemul1d |  |-  ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) ) | 
						
							| 6 | 2 1 3 4 | slemul1d |  |-  ( ph -> ( B <_s A <-> ( B x.s C ) <_s ( A x.s C ) ) ) | 
						
							| 7 | 5 6 | anbi12d |  |-  ( ph -> ( ( A <_s B /\ B <_s A ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) | 
						
							| 8 |  | sletri3 |  |-  ( ( A e. No /\ B e. No ) -> ( A = B <-> ( A <_s B /\ B <_s A ) ) ) | 
						
							| 9 | 1 2 8 | syl2anc |  |-  ( ph -> ( A = B <-> ( A <_s B /\ B <_s A ) ) ) | 
						
							| 10 | 1 3 | mulscld |  |-  ( ph -> ( A x.s C ) e. No ) | 
						
							| 11 | 2 3 | mulscld |  |-  ( ph -> ( B x.s C ) e. No ) | 
						
							| 12 |  | sletri3 |  |-  ( ( ( A x.s C ) e. No /\ ( B x.s C ) e. No ) -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) | 
						
							| 13 | 10 11 12 | syl2anc |  |-  ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) | 
						
							| 14 | 7 9 13 | 3bitr4rd |  |-  ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> A = B ) ) |