Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltsubsubbd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| sltsubsubbd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| sltsubsubbd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| sltsubsubbd.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | ||
| Assertion | sltsubsub3bd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsubsubbd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | sltsubsubbd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | sltsubsubbd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | sltsubsubbd.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | |
| 5 | 1 2 3 4 | sltsubsubbd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) ) |
| 6 | 1 2 3 4 | sltsubsub2bd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) ) |
| 7 | 5 6 | bitrd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) ) |