Metamath Proof Explorer


Theorem sltsubsub3bd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1
|- ( ph -> A e. No )
sltsubsubbd.2
|- ( ph -> B e. No )
sltsubsubbd.3
|- ( ph -> C e. No )
sltsubsubbd.4
|- ( ph -> D e. No )
Assertion sltsubsub3bd
|- ( ph -> ( ( A -s C )  ( D -s C ) 

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1
 |-  ( ph -> A e. No )
2 sltsubsubbd.2
 |-  ( ph -> B e. No )
3 sltsubsubbd.3
 |-  ( ph -> C e. No )
4 sltsubsubbd.4
 |-  ( ph -> D e. No )
5 1 2 3 4 sltsubsubbd
 |-  ( ph -> ( ( A -s C )  ( A -s B ) 
6 1 2 3 4 sltsubsub2bd
 |-  ( ph -> ( ( A -s B )  ( D -s C ) 
7 5 6 bitrd
 |-  ( ph -> ( ( A -s C )  ( D -s C )