| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltsubsubbd.1 |
|- ( ph -> A e. No ) |
| 2 |
|
sltsubsubbd.2 |
|- ( ph -> B e. No ) |
| 3 |
|
sltsubsubbd.3 |
|- ( ph -> C e. No ) |
| 4 |
|
sltsubsubbd.4 |
|- ( ph -> D e. No ) |
| 5 |
|
npcans |
|- ( ( A e. No /\ C e. No ) -> ( ( A -s C ) +s C ) = A ) |
| 6 |
1 3 5
|
syl2anc |
|- ( ph -> ( ( A -s C ) +s C ) = A ) |
| 7 |
|
npcans |
|- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( ( A -s B ) +s B ) = A ) |
| 9 |
6 8
|
eqtr4d |
|- ( ph -> ( ( A -s C ) +s C ) = ( ( A -s B ) +s B ) ) |
| 10 |
2 3
|
addscomd |
|- ( ph -> ( B +s C ) = ( C +s B ) ) |
| 11 |
10
|
oveq1d |
|- ( ph -> ( ( B +s C ) +s ( -us ` D ) ) = ( ( C +s B ) +s ( -us ` D ) ) ) |
| 12 |
2 4
|
subsvald |
|- ( ph -> ( B -s D ) = ( B +s ( -us ` D ) ) ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( ( B -s D ) +s C ) = ( ( B +s ( -us ` D ) ) +s C ) ) |
| 14 |
4
|
negscld |
|- ( ph -> ( -us ` D ) e. No ) |
| 15 |
2 14 3
|
adds32d |
|- ( ph -> ( ( B +s ( -us ` D ) ) +s C ) = ( ( B +s C ) +s ( -us ` D ) ) ) |
| 16 |
13 15
|
eqtrd |
|- ( ph -> ( ( B -s D ) +s C ) = ( ( B +s C ) +s ( -us ` D ) ) ) |
| 17 |
3 4
|
subsvald |
|- ( ph -> ( C -s D ) = ( C +s ( -us ` D ) ) ) |
| 18 |
17
|
oveq1d |
|- ( ph -> ( ( C -s D ) +s B ) = ( ( C +s ( -us ` D ) ) +s B ) ) |
| 19 |
3 14 2
|
adds32d |
|- ( ph -> ( ( C +s ( -us ` D ) ) +s B ) = ( ( C +s B ) +s ( -us ` D ) ) ) |
| 20 |
18 19
|
eqtrd |
|- ( ph -> ( ( C -s D ) +s B ) = ( ( C +s B ) +s ( -us ` D ) ) ) |
| 21 |
11 16 20
|
3eqtr4d |
|- ( ph -> ( ( B -s D ) +s C ) = ( ( C -s D ) +s B ) ) |
| 22 |
9 21
|
breq12d |
|- ( ph -> ( ( ( A -s C ) +s C ) ( ( A -s B ) +s B ) |
| 23 |
1 3
|
subscld |
|- ( ph -> ( A -s C ) e. No ) |
| 24 |
2 4
|
subscld |
|- ( ph -> ( B -s D ) e. No ) |
| 25 |
23 24 3
|
sltadd1d |
|- ( ph -> ( ( A -s C ) ( ( A -s C ) +s C ) |
| 26 |
1 2
|
subscld |
|- ( ph -> ( A -s B ) e. No ) |
| 27 |
3 4
|
subscld |
|- ( ph -> ( C -s D ) e. No ) |
| 28 |
26 27 2
|
sltadd1d |
|- ( ph -> ( ( A -s B ) ( ( A -s B ) +s B ) |
| 29 |
22 25 28
|
3bitr4d |
|- ( ph -> ( ( A -s C ) ( A -s B ) |