Step |
Hyp |
Ref |
Expression |
1 |
|
sltsubsubbd.1 |
|- ( ph -> A e. No ) |
2 |
|
sltsubsubbd.2 |
|- ( ph -> B e. No ) |
3 |
|
sltsubsubbd.3 |
|- ( ph -> C e. No ) |
4 |
|
sltsubsubbd.4 |
|- ( ph -> D e. No ) |
5 |
4 3
|
subscld |
|- ( ph -> ( D -s C ) e. No ) |
6 |
2 1
|
subscld |
|- ( ph -> ( B -s A ) e. No ) |
7 |
5 6
|
sltnegd |
|- ( ph -> ( ( D -s C ) ( -us ` ( B -s A ) ) |
8 |
2 1
|
negsubsdi2d |
|- ( ph -> ( -us ` ( B -s A ) ) = ( A -s B ) ) |
9 |
4 3
|
negsubsdi2d |
|- ( ph -> ( -us ` ( D -s C ) ) = ( C -s D ) ) |
10 |
8 9
|
breq12d |
|- ( ph -> ( ( -us ` ( B -s A ) ) ( A -s B ) |
11 |
7 10
|
bitr2d |
|- ( ph -> ( ( A -s B ) ( D -s C ) |