Metamath Proof Explorer


Theorem sltsubsub2bd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1
|- ( ph -> A e. No )
sltsubsubbd.2
|- ( ph -> B e. No )
sltsubsubbd.3
|- ( ph -> C e. No )
sltsubsubbd.4
|- ( ph -> D e. No )
Assertion sltsubsub2bd
|- ( ph -> ( ( A -s B )  ( D -s C ) 

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1
 |-  ( ph -> A e. No )
2 sltsubsubbd.2
 |-  ( ph -> B e. No )
3 sltsubsubbd.3
 |-  ( ph -> C e. No )
4 sltsubsubbd.4
 |-  ( ph -> D e. No )
5 4 3 subscld
 |-  ( ph -> ( D -s C ) e. No )
6 2 1 subscld
 |-  ( ph -> ( B -s A ) e. No )
7 5 6 sltnegd
 |-  ( ph -> ( ( D -s C )  ( -us ` ( B -s A ) ) 
8 2 1 negsubsdi2d
 |-  ( ph -> ( -us ` ( B -s A ) ) = ( A -s B ) )
9 4 3 negsubsdi2d
 |-  ( ph -> ( -us ` ( D -s C ) ) = ( C -s D ) )
10 8 9 breq12d
 |-  ( ph -> ( ( -us ` ( B -s A ) )  ( A -s B ) 
11 7 10 bitr2d
 |-  ( ph -> ( ( A -s B )  ( D -s C )