Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
⊢ i ∈ ℂ |
2 |
1 1
|
mulcli |
⊢ ( i · i ) ∈ ℂ |
3 |
2 2 1
|
mulassi |
⊢ ( ( ( i · i ) · ( i · i ) ) · i ) = ( ( i · i ) · ( ( i · i ) · i ) ) |
4 |
1 2
|
mulcli |
⊢ ( i · ( i · i ) ) ∈ ℂ |
5 |
1 1 4
|
mulassi |
⊢ ( ( i · i ) · ( i · ( i · i ) ) ) = ( i · ( i · ( i · ( i · i ) ) ) ) |
6 |
1 1 1
|
mulassi |
⊢ ( ( i · i ) · i ) = ( i · ( i · i ) ) |
7 |
6
|
oveq2i |
⊢ ( ( i · i ) · ( ( i · i ) · i ) ) = ( ( i · i ) · ( i · ( i · i ) ) ) |
8 |
1 1 2
|
mulassi |
⊢ ( ( i · i ) · ( i · i ) ) = ( i · ( i · ( i · i ) ) ) |
9 |
8
|
oveq2i |
⊢ ( i · ( ( i · i ) · ( i · i ) ) ) = ( i · ( i · ( i · ( i · i ) ) ) ) |
10 |
5 7 9
|
3eqtr4i |
⊢ ( ( i · i ) · ( ( i · i ) · i ) ) = ( i · ( ( i · i ) · ( i · i ) ) ) |
11 |
3 10
|
eqtri |
⊢ ( ( ( i · i ) · ( i · i ) ) · i ) = ( i · ( ( i · i ) · ( i · i ) ) ) |
12 |
|
rei4 |
⊢ ( ( i · i ) · ( i · i ) ) = 1 |
13 |
12
|
oveq1i |
⊢ ( ( ( i · i ) · ( i · i ) ) · i ) = ( 1 · i ) |
14 |
12
|
oveq2i |
⊢ ( i · ( ( i · i ) · ( i · i ) ) ) = ( i · 1 ) |
15 |
11 13 14
|
3eqtr3i |
⊢ ( 1 · i ) = ( i · 1 ) |