Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
2 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
3 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
4 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
5 |
|
ax-icn |
⊢ i ∈ ℂ |
6 |
5
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → i ∈ ℂ ) |
7 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
9 |
6 8
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · 𝑦 ) ∈ ℂ ) |
10 |
2 4 9
|
adddid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( 1 · 𝑥 ) + ( 1 · ( i · 𝑦 ) ) ) ) |
11 |
|
remulid2 |
⊢ ( 𝑥 ∈ ℝ → ( 1 · 𝑥 ) = 𝑥 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · 𝑥 ) = 𝑥 ) |
13 |
2 6 8
|
mulassd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 1 · i ) · 𝑦 ) = ( 1 · ( i · 𝑦 ) ) ) |
14 |
|
sn-1ticom |
⊢ ( 1 · i ) = ( i · 1 ) |
15 |
14
|
oveq1i |
⊢ ( ( 1 · i ) · 𝑦 ) = ( ( i · 1 ) · 𝑦 ) |
16 |
15
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 1 · i ) · 𝑦 ) = ( ( i · 1 ) · 𝑦 ) ) |
17 |
6 2 8
|
mulassd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( i · 1 ) · 𝑦 ) = ( i · ( 1 · 𝑦 ) ) ) |
18 |
|
remulid2 |
⊢ ( 𝑦 ∈ ℝ → ( 1 · 𝑦 ) = 𝑦 ) |
19 |
18
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · 𝑦 ) = 𝑦 ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · ( 1 · 𝑦 ) ) = ( i · 𝑦 ) ) |
21 |
16 17 20
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 1 · i ) · 𝑦 ) = ( i · 𝑦 ) ) |
22 |
13 21
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · ( i · 𝑦 ) ) = ( i · 𝑦 ) ) |
23 |
12 22
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 1 · 𝑥 ) + ( 1 · ( i · 𝑦 ) ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
24 |
10 23
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 1 · 𝐴 ) = ( 1 · ( 𝑥 + ( i · 𝑦 ) ) ) ) |
26 |
|
id |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
27 |
25 26
|
eqeq12d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 1 · 𝐴 ) = 𝐴 ↔ ( 1 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) ) |
28 |
24 27
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 1 · 𝐴 ) = 𝐴 ) ) |
29 |
28
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
30 |
1 29
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |