| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spc2ed.x | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 2 |  | spc2ed.y | ⊢ Ⅎ 𝑦 𝜒 | 
						
							| 3 |  | spc2ed.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 4 |  | 2nalexn | ⊢ ( ¬  ∀ 𝑥 ∀ 𝑦 𝜓  ↔  ∃ 𝑥 ∃ 𝑦 ¬  𝜓 ) | 
						
							| 5 | 4 | con1bii | ⊢ ( ¬  ∃ 𝑥 ∃ 𝑦 ¬  𝜓  ↔  ∀ 𝑥 ∀ 𝑦 𝜓 ) | 
						
							| 6 | 1 | nfn | ⊢ Ⅎ 𝑥 ¬  𝜒 | 
						
							| 7 | 2 | nfn | ⊢ Ⅎ 𝑦 ¬  𝜒 | 
						
							| 8 | 3 | notbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  →  ( ¬  𝜓  ↔  ¬  𝜒 ) ) | 
						
							| 9 | 6 7 8 | spc2ed | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ¬  𝜒  →  ∃ 𝑥 ∃ 𝑦 ¬  𝜓 ) ) | 
						
							| 10 | 9 | con1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ¬  ∃ 𝑥 ∃ 𝑦 ¬  𝜓  →  𝜒 ) ) | 
						
							| 11 | 5 10 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ∀ 𝑥 ∀ 𝑦 𝜓  →  𝜒 ) ) |